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NSTX Fueling Observations

• NSTX H-modes suffer uncontrolled density rise
– Due to limited fueling control from center stack injector?

• NSTX L-modes also exhibit density rise
– No center stack injector used

-> NSTX generally has high recycling

• Recycling control needed, but where are particles and power?



NSTX Explores Low Aspect Ratio (A=R/a) physics regime

}⇒A ≥ 1.27

Passive stabilizing 
plates

Graphite tiles
Parameters Design Achieved
Major Radius  0.85m
Minor Radius  0.67m
Plasma Current  1MA  1.5MA
Toroidal Field  0.6T  0.6T
Heating and Current Drive
NBI (100keV)  5MW  7 MW
RF (30MHz)  6MW  6 MW

Wall Conditioning:
350 deg. bakeout of graphite tiles
Regular boronization (~3 weeks)
Helium Glow between discharges
Center stack gas injection



Load-and-Dump Gas Injectors Have Different Flow
Characteristics and Delay Time
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Uncontrolled (non-disruptive) density rise in long pulse
H-modes
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• Density control needed for
improved current drive efficiency,
transport studies, and power and
particle handling research



Density also rises faster than NBI fuel rate in long pulse
L-modes
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Classic Particle Balance Model used to Estimate Particle
Containment Time

• Assuming constant NBI and gas source term, time
dependence of plasma content has analytic solution

dN

dt
= NBISNBI + gasSgas − N

p
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Particle Containment Times ~ 0.2-0.3 sec. in NSTX with
constant gas fueling rate model
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y = (m1*m2-3.94)*(1-exp(-m0/...

ErrorValue

0.7080854.817m1 

0.00351230.20087m2 

NA0.9874Chisq

NA0.99795R

τp* ~ 0.2 sec
τE ~ 0.055 sec



Classic Density Rise Model Can Be Modified with Realistic
Time Dependencies

• Assuming time dependent gas source term; time dependence
of plasma content has analytic solution

dN

dt
= NBISNBI + gasSgas(t)− N

p
*

where Sgas(t) = Sgas,0 exp −
t
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Particle Containment Times ~ 0.5 sec. in NSTX with more
realistic gas fueling rate model

τp* ~ 0.5 sec
τE ~ 0.055 sec



In all models, p* ~ 0.5 sec >> E, i.e. Reff > 0.5
>> NSTX is almost always high recycling with NBI

p
*(t)= p,0

* (1+ t) (some L −modes with increasing confinement or recycling)

S
gas

(t)=S
gas,0(1+ t) (source increasing/decreasing with time) 

gas
(t)=

gas,0 exp −t /
p
* 

   
   (fuel efficiency decreasing with time)

gas(t) = gas,0 / N(t) (fuel efficiency decreasing with density)

• Solutions to More Realistic Dependencies of Fueling
Terms in Progress, i.e.



Where are particles and power in NSTX divertor?

• Dα peaks near inner and outer strike points, inner ~ 3x outer
– Ratio reverses during power excursion -> inner probably detached

– Most particles on outer side -> consistent with module location

• Heat flux always peaks near outer strike point
– inner strike point peak heat flux and power < 1/3 outer values

– > consistent with module location



D  profile normally peaks near Inner Strike Point, but
reverses during heat pulse
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• Reversal of in/out
Dα profile during
heat pulse is
consistent with
inner side being
detached

• Similar situation in
pre-cryopump days
at DIII-D

• Reduced recycling
will probably re-
attach ISP, so Dα
will go down

• Likely more
particles near OSP;
need LP data to
confirm



Peak heat flux always peaks near outer strike point in
lower-single null configuration

• Good power accountability:Pdiv
in+out ~ 70% of PSOL
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Progress on Assessment of NSTX Divertor Particle and Heat
Fluxes

• NSTX is always (99%) in moderate-high recycling state and
suffers from uncontrolled density rise
– L-mode density increases with NBI fueling; no need for gas puffing
– H-mode density increase > NBI fuel rate; τp* ~ 0.2-0.5 sec

-> Density control needed, but where are particles and power?

• Dα peaks near inner and outer strike points, inner ~ 3x outer
– Ratio reverses during power excursion -> inner probably detached

– Most particles on outer side -> consistent with module location

• Heat flux always peaks near outer strike point
– inner strike point peak heat flux and power < 1/3 outer values

– > consistent with module location

• UEDGE modeling in progress; DEGAS-2/TRANSP  to
follow to estimate effect of lower recycling



Backup: H-mode slides



Different Gas Puffers Light up Different Plasma Regions
(unfiltered)

CS mid, LSN
109866@0.2s

X-point+LFS top, LSN
109884@0.2s

CS top, DND
109885@0.2s

CS top, LSN
109869@0.2s

LFS top, LSN
109875@0.201s

CS top, USN
109877@0.2s



H-mode Plasmas Achieved Long Pulse, Owing to Low
Volt-Second Consumption Rate
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max ~ 6.2
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H-mode Plasmas Achieved High t, Owing to Reduced
Pressure Peaking Factor
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only

H-modes
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Sabbagh, IAEA 2002

Min fp(H) ~ 1.9, Min fp(L) ~ 2.6
fp pe/<pe>



L-H power threshold and ELM studies reveal differences
with conventional aspect ratio tokamaks

• L-H transition: PL-H
NSTX>Pth,1

• Ip dependence
   - related to Er through fast ion loss?
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